Embedded Eye

Give your gizmo the gift of sight

I was pleased to see a cool laser rangefinding project on Kickstarter- I hope this project gets fully funded (and I'm a backer). I've actually been experimenting myself with structured light and laser rangefinding using our ArduEye hardware and thought I'd share it here.

The setup is very simple- An Arduino Pro Mini serves as the computing backbone of the device. Via a 2N2222 transistor (I know I know...) the Arduino can on and off a red laser module. The Arduino is connected to an ArduEye breakout board with one of Centeye's Stonyman image sensor chips and a cell-phone camera lens. The whole setup (excluding the FTDI thing) weighs about 10.9 grams. I think we can reduce that to maybe 4 or 5 grams- the laser module weighs 1.9 grams and is the limiting factor.

The principle of operation is straight forward- the laser is mounted horizontally from the image sensor by a known baseline distance. The Arduino first turns off the laser and then grabs a small image (3 rows of 32 pixels in this implementation). Then the Arduino turns the laser on and grabs the same pixels. The Arduino then determines which pixel experienced the greatest increase in light level due to the laser- that "winning point" is the detected location of the laser in the image. Using this location, the baseline distance, the lens focal length, the pitch between pixels on the image sensor, and basic trigonometry, we can then estimate the detected distance. I haven't yet implemented this final distance calculation- my main interest was seeing if the laser could be detected. The above video shows the system in operation.

In practice, I've been able to pick up the laser point at a distance of up to about 40 feet- not bad for a 2 mW laser. In brighter lights you can put an optical bandpass filter that lets through only laser light- with this the system works at distances of say 10 feet even in 1 klux environments e.g. a sunlit room. If you are using this for close ranges, you can turn up the pulse rate and grab distances at up to 200Hz. How does an Arduino grab and process images at 200Hz? Easy- at 3x32 it is only grabbing 96 pixels!

Views: 13356

Comment by Brijesh on July 18, 2012 at 11:36pm


I did exactly the same thing but using a different sensor. It is 128x1 linear array sensor from Taosinc.  Unfortunately the sensor has become obsolete.

I got good results but was not able to increase the range beyond 50cm. Beyond 50cm the resolution became very bad. That is pure trignometry. I think I need more pixels and higher resolution pixels to maintain sub centimeter resolution beyond 50cm.

Here is picture of my board that built to prototype the laser range finder. I should revisit this project again. Previously I was stumbling along in terms of optics and did not have any for suggestions.



You need to be a member of Embedded Eye to add comments!

Join Embedded Eye

© 2022   Created by Geoffrey L. Barrows.   Powered by

Badges  |  Report an Issue  |  Terms of Service